

LEAG Briefing
Lunar Science Forum
NASA/Ames Research Center

July 23, 2009

The Gravity Recovery and Interior Laboratory (GRAIL) Mission

Maria T. Zuber
Principal Investigator
Massachusetts Institute of Technology

David E. Smith
Deputy Principal Investigator
NASA/Goddard Space Flight Center

Michael M. Watkins
Project Scientist
Jet Propulsion Laboratory

David H. Lehman
Project Manager
Jet Propulsion Laboratory

GRAIL Science Team: Sami W. Asmar, Alexander S. Konopliv, Frank G. Lemoine, H. Jay Melosh, Gregory A. Neumann, Roger J. Phillips, Sean C. Solomon, Mark A. Wieczorek, James G. Williams

GRAIL science objectives

• Primary:

- Determine the structure of the lunar interior, from crust to core
- Advance understanding of the thermal evolution of the Moon

Secondary:

 Extend knowledge gained from the Moon to other terrestrial planets

GRAIL performance

Recent/Anticipated Lunar Gravity Missions

Reference	Data	Comment	
Lemoine et al. [1997]	Lunar Orbiter 1-5, Apollo subsatellites, Clementine	70°x70° (78 km) spherical harmonic solution	
Konopliv et al. [2001]	Lunar Orbiter 1-5, Apollo sub-satellites, Clementine, Lunar Prospector	~130°x130° (42 km) nearside, 15°x15° (365 km) farside w/ amplitudes suspect; weak k ₂ estimate	
KAGUYA (SELENE; 2007; Japan) subsatellite	S- and X-band; 70°x70° (80 km x 80 km) spherical harmonic solution	Data noise more than 100x > GRAIL; spatial resolution 4x coarser than GRAIL.	
Lunar Reconnaissance Orbiter (2008; USA)	S-band; laser tracking to s/c on nearside	Improvement to 1-m radial s/c orbits; best effort gravity field. Data noise more than 100x > GRAIL	
Gravity Recovery and Interior Laboratory (GRAIL)	Satellite-to-satellite tracking (Ka-band); S-band link to Earth	Global 180°x180° spherical harmonic solution (30 km x 30 km); k ₂ to 1%	

- GRAIL gravity field to I=270 (block size 20 km)
- KAGUYA gravity field to I=70 (block size 80 km)
- @ I=70, KAGUYA S/N =1; GRAIL S/N = 1000

GRAIL Orbiter Configuration

The technical data in this

Gravity Recovery Instrument for Planets (GRIP)

- GRAIL payload prototype demonstrated and exceeded required mission performance.
- Capability to change line-of-sight distance in sub-micron steps.
- GRAIL terminal and GRACE spare terminal ranged using GRACE software demonstrated inter-operability of hardware and software.
- Test bed being used for performance testing of flight hardware and software.

JPL/Caltech

GRAIL's science investigations

- 1. Structure of lunar crust and lithosphere
- 2. Asymmetric thermal evolution
- 3. Subsurface structure of impact basins and origin of mascons
- Temporal evolution of crustal brecciation and magmatism
- 5. Interior structure from lunar tides
- 6. Constraints on whether Moon has an inner core

Early cooling indicated by structure of impact basins

500

It is enigmatic that lunar lithosphere apparently was able to support such large gravity anomalies during & after late heavy bombardment.

→ Early lunar lithosphere cooled quickly enough to support large loads.

Neumann et al. [1996]; Wieczorek and Phillips [1997]

Orientale Basin: Oblique view of Orientale along with gravity from Model LP150Q. Panels (right) show gravity predicted by flexural model with T_e = 50 km assuming a dual-layered crust (dark & light blue).

-70

-80

1000

Basin Ring Formation

(2) Block Faulted Basin Ring

(3) Isostatically Compensated Basin Ring

Orientale Model: Basin diameter = 400 km, Crust density = 2900 kg/m³, Mantle density = 3900 kg/m³, Basin depth = 3 km, Scarp height= 6 km, Crust thickness = 50 km.

Total Free-Air Gravity Anomalies

Differential Anomalies

Magmatism and Brecciation

Bouguer LOS gravity was calculated for 8 post-Imbrian craters & 8 older, unfilled craters & converted to mass anomalies. LOS free-air gravity was obtained from Doppler tracking data from Apollo 14-17 CSMs, A16 LEM, and A15-16 sub-satellites. S/C altitude ranged from 15 to 80 km. Topography from Apollo LTOs & (mainly) Earth-based radar. From Dvorak [1979].

- Apollo-era gravity analysis of 16 lunar craters. Post-Imbrian craters show mass deficiency in subsurface, whereas older, unfilled craters show ~zero mass deficiency.
- Hypothesis is that craters formed w/ breccia zones that were magmatically sealed during Moon's volcanic era.
- Analysis was hampered by small data set & errors in gravity & topography.

GRAIL can test this hypothesis, including role of compensation, with a global high-resolution, high precision data set, and, if valid, can map out magmatic history of lunar crust in space and time.

Deep interior: Inner core detection

Tradeoff between inner core gravity and tilt required to detect solid inner core.

Science requirements and system performance

Science Investigations	Area (10 ⁶ km ²)	Resolution (km)	Requirements (30 km block)	Baseline Performance (CBE) 90 days
1. Crust & Lithosphere	~10	30	± 10 mGals, accuracy	± 1.0 (0.2) mGals
2. Thermal Evolution	~4	30	± 2 mGals, accuracy	± 1 (0.2) mGals
3. Impact Basins	~1	30	± 0.5 mGals, precision	± 0.2 (0.04)mGals
4. Magmatism	~0.1	30	± 0.1 mGals, precision	± 0.04 (0.007) mGals
5. Deep Interior	N/A	N/A	k2 ± 6x10 ⁻⁴ (3%)	± 0.5 (0.3) x10 ⁻⁴
6. Core Detection	N/A	N/A	k2 ± 2x10 ⁻⁴ (1%)	± 0.5 (0.3) x10 ⁻⁴
(Inner)			C21 ±1x10 ⁻¹⁰	± 0.5 (0.3) x10 ⁻¹⁰

90-day mission Current Best Estimate (CBE) Performance meets science requirements with considerable margin.

GRAIL Programmatic Summary

- Level 1-4 requirements defined; Project Level Rrquirement Appendix signed.
- Passed Preliminary System Review (04/08)
- Passed 15 inheritance reviews
- Passed 19 subsystem PDRs
- Fully compliant with NPR 7120.5D
- All required documents and schedules delivered
- Successful Preliminary Design Review (11/11-11/14); asked by SRB to study accelerating CDR by as much as 6 weeks given current state of Project maturity.
- Passed Confirmation Review (01/20/09)
- Critical Design Review scheduled for 11/09
- GRAIL is currently on cost, on schedule, and within all required margins for mass, power, etc.

